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AbICrIet-The problem of transversely inextensible, circular cylindrical shells subjected to arbitrarily
prescn'bed edge-stresses or displacements is considered. Solutions are sought in terms eigenfunctions which
decay exponentially in the axial direction. The edge-conditions are treated using a biorthogonality property
of these eigenfunctions. Numerical examples are presented comparing the present exact results with the
known asymptotic results.

INTRODUCTION
In a previous paper[l] we considered the problem of transversely inextensible, semi-infinite
circular cylindrical shells subjected to arbitrarily prescribed end stresses or end displacements.
Assuming the thickness to diameter ratio of the shell to be small, an asymptotic approach was
used to obtain the "interior" as well as the "S1. Venant edge-zone" forms of the equations of
elasticity and also to show how to obtain the appropriate boundary conditions for these two
asymptotic sequences of differential equations. While the asymptotic analysis relates three
dimensional elasticity theory to two dimensional shell theories, the elasticity problem posed
in[l] also admits an exact infinite series solution. The present paper deals with this solution.
Through the use of biorthogonal eigenfunctions it is shown that all elastically admissible
combinations of stress and displacement edge-conditions can be treated without reso,rting to the
solution of an infinite system of equations-a situation occurring in the problem of end-loaded
isotropic cylinders [2]. We attempt to develop the solution with the specific purpose of verifying
the results of[t] insofar as thin shells are concerned. The "interior" and the "edge-zone"
contributions of the asymptotic theory appear in a recognizable form in terms of the eigen
functions. The characteristic exponents determining the axial decay of the solutions comeout to
be remarkably close to those obtained in[l]. Numerical examples are presented to illustrate the
effects of thickness to diameter ratio and of shear deformability.

FORMULATION OF THE PROBLEM [IJ

The differential equations for symmetric deformations of transversely inextensible shells
consist of the equilibrium equations

rux,s +(1'r).r =0, 1'r,s +(rur).r - Us =0,

and the constitutive relations

(l)

_ u x - PUs
U.X - E

V.r=O "u.r +V,s =G (2)

where E, G and P are independent constants.
The system of eqns (1) and (2) is to be solved in the region 0< x < 00, a < r< b subject to

the surface conditions

ur(a, x) =,,(a, x) =0, u,(b, x) = 'T'(b, x) =0

605

(3)
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and subject to anyone of the following sets of conditions for x = 0 and a ~ , ~ b

U x =ux , v = V*, (3a)

Ux =ux , Q=Q*, (3b)

U,r = ii,,, v =V*, (3c)

U,r = ii,,, Q=Q*, (3d)

where ux and ii,r are prescribed functions of , and V* and Q* are prescribed constants. As
shown in[l], in the case of transversely inextensible shells v is independent of , and the
appropriate edge condition, instead of a prescribed shear stress is a prescribed transverse shear
stress resultant given by

Q*= Jb 21" daa+b r, (4)

We further stipulate that the stresses vanish as x -+ 00. For this, ux must be such that
f: uxr dr =O.

From eqn (2) we obtain

v = V(x), U =.!.- V,r G ,x (5)

EV 1- v2 v
us=-+vu U =--u --V.r X''x EXr

We next introduce a stress function ell in the form

Ea Ea
rux =1- vi(rell)", 1'1' =1_ vi rell,x,

(6)

(7)

to satisfy the first equation in (1). As l' must vanish at the inner and outer surface, ell has to
satisfy.

eIl(x, a) =eIl(x, b) =O.

Using eqns (5) and (7) in the second equation in (1) we obtain

which satisfies ur(a, x) =O. In order to satisfy ur(b, x) =0 we must have

Eliminating U between the second equations in (5) and (6) and using (7) we get

(8)

(9)

(10)

(11)

where a 2 = EIG(1- v2
).

The integro-difterential equations (10) and (11) are to be solved subject to the surface
conditions (8) and anyone of the four sets of conditions in (3).
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SERIES SOLUTIONS OF THE BOUNDARY VALUE PROBLEM

Solutions of the eqns (10) and (11) are sought in the form

where At are constants to be determined using the edge-conditions and where

~ =x/a, 7/ =ria.

(12)

(13)

For the solutions to vanish as x -+ 00 we must have Re Ak > O. In order to satisfy the surface
condition (8) we must have

(14)

Introducing (12) into (10) and (11) we obtain as equations for Vk and CPt.

(15)

(16)

where the dots denote differentiation with respect to 7/ and K = b/a.
The edge-conditions (3) may be written as

(17a)

(17b)

(17c)

(17d)

where M* and {3* are the edge-bending moment and the weighted edge-rotation defined in[l],
by means of the relations

fb [ a+b] 2r a2 fKM* = iT" r--- -- dr =-- [27/ - K -1]iT,,7/ d7/
a 2 a+b K+l I

3 fb [ (2r - a - b)2]" dr 6 fK{3* =-- 1- ....L- =~ [7/2_(K +1)7/ +K]U,r d7/
2 a b - a b - a (K - 1) I

(18)

(19)

(20)

and the functions f and g are given by

a2 r" _ 1 _
f =M*7/ JI 0',,7/ d7/, g =- {3* ",r

Our purpose in introducing M* and {3* here is to obtain the results in terms of quantities
which can be readily compared with the results of the asymptotic analysis[l].

BIORTHOGNAL EIGENFUNCTIONS

The constants Ak may be obtained from the edge conditions (17) through the use of the
generalized orthogonality of the eigenfunction pair (CPt. Vk ). This approach has been utilized
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previously by Prompov[3], for plates, by Gusein-lade[4j, and Johnson and Little[5] for elastic
semi-infinite strips and by Klemm and Little[2] for isotropic solid cylinders. For our problem
the generalized orthogonality can be obtained as follows.

We multiply eqn (15) by V, and add this to the integral of the product of eqn (16) and ct>, to
obtain

[(1- v~ In KVk+f (Ak2+vl71Z)ct>k71 d." ] V,

+f [{~(71ct>k) "} .+~2Ak2ct>k +(Ak
2 +v/712)Vk]ct>m d71 == O.

Integration by parts and the use of eqns (14)-(16) with k replaced by I gives

The eigenfunctions (ct>b Vk) may be normalized to write

(21)

(22)

(23)

where 8kl is the Kronecker delta.
We now obtain explicit expressions for the constants Ak from the edge conditions. From

(17a) we have

From (24) and (23) we find

where

M* V*
Ak ="(FDA+-bka a a

(24)

(25)

(26)

Thus, in the mixed edge condition case, (17a) the constants Ak are obtained in a straight
forward manner.

Using the expression (25) in the second equation in (17b) gives

(27)

That is,

(28)

Use of (28) in (25) gives, for the edge condition case (17b)

(29)
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Similarly, in the case of (17c) and (17d) we have

and

where we have used the notation

609

(30)

(31)

(32)

In the case of general transversely isotropic cylinders it is known [2] that the constants Ak

have to be obtained by solving an infinite system of equations whenever the boundary
condtions are of the form (17b) or (17c). However, in the limiting type transverse isotropy this
difficulty does not arise.

INFLUENCE COEFFICIENTS

Given two quantities, one from each one of the two sets (M*, {3*) and (V*, Q*) it is of
interest to obtain expressions for the remaining two quantities in terms of these. Corresponding
to the edge-condition cases (17a) to (17d) we use generalized influence coefficients G, to write

{3* =G~J.,M* +G~~V*, Q* =G~).,M* +G~~V*,

{3* =G~J.,M* +G~6Q*, V* =G~).,M* +G~bQ*,

M* = G~(J{3* +G~vV*, Q* =G~A{3* +G~~V*,

M* = G~{3* +G~V*, V* = GY1Af3* +GY1bQ*,

(33a)

(33b)

(33c)

(33d)

where G(JM' G/lQo GVM and GVQ are flexibility coefficients, GM(J' GMV, GQ(J and GQV are stiffness
coefficients and the remaining coefficients are of a mixed nature. From the defining relations (4),
(18) and (19) it is clear that these coefficients are dependent on the edge-stress distribution f(.,,)
or on the edge-rotation distribution g( .,,). Furthermore, these coefficients may be expressed in
terms of Ak once Ak are known. We, next illustrate this in the case (17b) when Q* = 0 and in
the case (17c) when V* = O. Using

in eqns (19) and (18) respectively, we have

{3*=(K + 1) ~ A~kCk, M* = - 2Ga
2
a

2
~ A b

~I\ K+l~kb

where

(34)

(35)

(36)

(37)
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Introducing (29) and (30) into (36) we obtain

(38)

(39)

We note that the flexibility coefficient G~k and the stiffness coefficient G~ correspond to
the coefficients CMM and KfJP used in[6]. However, in[6] the distribution functions f and g were
assumed to be alinearfunction of 11 andaconstantrespectively. Inelementaryshell theorytheexact
form of the functions f and gdoes not affect the influencecoefficients; the average quantities M* and
fJ* determine the nature of the solution. In thin shell approximation we have

(40)

(41)

We may write eqns (38) and (39) in the form

GW-t =Ctg",(I- 1'2)1/4 I(~)(I( -1)3 I fA _bkI f"b"A"]Ck (42)
lOS V 1(-1 2 L Ib"2A,, Ak

(
lOS )(1/4) 1(1( -1) 2 r. I gIl V,,/A~ b

G~" =K~J 1- 1'2 V I( + I (I( _1)3 ILk - Vk I V
n
2/A"J A: (43)

It is expected that G~k -+ CtgM and Gtg,,-+ K~J as I( -+1. For an explicit evaluation to
these coefficients we return to the eigenvalue problem expressed by the eqns (15) and (16).

THE EIGENVALUE PROBLEM

Guided by the results of[l] we expect that the eigenvalues (with positive real parts) Ak
consist of a pair of complex conjugate numbers Ao, '\0 and a series of real numbers At>
k == 1,2, ... ; with Ao, '\0 being associated with the 'interior' solutions and the remaining At being
associated with the 'edge·zone' solutions of the asymptotic theory. Furthermore, we know
from[l] that

I( -+1, Ao, '\0- [3(1 4p~r4[: ~ ~r2 (1 ± i),

Ak - a(:k~ 1) (when k ~ 1).

Again, guided by the results of[1] we seek the eigenfunctions in the form

(44)

(45)

(46)

(47)

where 1/1", n =1, 2, ... , are real valued functions, orthonormal in 1< 11 < I( with a weight
function 11, which satisfy

[(111/1,,) '/11]' +1-£"21/1,, = 0; n =1,2, ... (48)
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and where Xl satisfies

with Xl and "'n vanishing at 1/ =1and at 1/ =K. The solutions of (48) and (49) are given by

where the eigenvalues JLn satisfy "'n(K) =0 and where Bn are constants.
In order to have

we must have

Here, JI and YI are the Bessel functions of the first order.
Use of eqn (47) in (16) gives

From the orthonormal property of "'n we get

611

(49)

(50)

(51)

(52)

(53)

(54)

(55)

where

Introducing (50) in (56) we evaluate PII and qll in the form.

We next introduce (47) in (15) to get the characteristic equation for At.

(56)

(57)

(58)

(59)



612 S. NAIR

The biorthogonality condition (23) determines Vk in the form

I _ ~ PnAk
2+vqn {2 2 2 2 2 }-v:2 - ~ (2 2 I 2)2 PnlLn +a vqn - a Ak Pn .

k ILn - a Ilk
(60)

With this, for any given edge-stress or edge-rotation distributions it is possible to obtain
the solution of our problem. In what follows we consider two special cases of edge conditions.

Linear edge-stress distribution
We consider an edge-stress distribution of the form

_6(K+I)[r K+I]M*
ru,,- (K-I) (j--2- (J'

From eqn (20) we then have

3(K +I) [ K]1(T/)=(K_1)3 T/-(K+I)+~.

Using (62) in (26) we obtain the constants Ik as

In order to evaluate the influence coefficients G~M = CMM we have to introduce

in eqn (42).

Constant edge-rotation distribution
Here, we take

ii,r=-{3*, Le. g(T/) = I

and with this, from (32) we obtain

(61)

(62)

(63)

(64)

(65)

(66)

which are to be used in eqn (43) to evaluate G~1l = Klili•

Numerical results. With the objective of comparing the present results with the results of[l]
and of the elementary shell theory we consider moderately thick shells with K = bla having the
values l.l and 1.25. Table I gives the first ten roots of the equation

(67)

For large values of n, the nth root ILn may be obtained using an asymptotic formula given in [7].
The roots of the characteristic eqn (59) when v= 1/3 and a2 = OJ, 3 are given in Table 2. We
also include the values of Ak obtained using the asymptotic theory[l] for the case K = 1.25,
a 2 = 3 in parentheses. These two sets of numbers are remarkably close. The odd numbered
roots At in parentheses correspond to 2k1rla(K -I) and the even numbered roots correspond to
2A*la(K -I) where A* satisfies tan A*= A*.

The significance of the "interior" solution contributions as compared to the "edge zone"
solution contributions is illustrated in Table 3 in terms of the coefficients Ak and Vk entering the
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IC .. I-I IC .. 1-25

1 31-4268 12-5900
2 62-8373 25-1447
3 94-2514 37.7071
4 125-6664 50-2715
5 157-0818 62-8366
6 188-4975 75-4022
7 219·9132 87·9680
8 251·3288 100.5339

9 282·7448 113-1000
10 314·1606 125·6661

Table 2. Roots of eqn (60)

k II: .. I-I II: .. 1'25

a 2.O-3 a 2..3 a 2..O_3 a 2"3

0 3'9352 4-0175 2' 4006 2'5172 (2- 7108)
±i 3.9552 ±i 3-8718 ±i 2-4291 ±i 2.3088 (2-7108)

1 114·7181 36-2770 45·8934 14-5127 (14· 5104)
2 164-0888 51-8871 65'6561 20'7572 (20-7542)
3 229-4311 72-5525 91'7755 29'0220 (29' 0207)
4 282-0957 89-2060 112'8498 35'6852 (35'6814)
5 344-1456 108-8284 137'6601 43-5319 (43-5312)
6 398-1711 125-9126 159-2756 50-3670 (50-3640)
7 458-8602 145-1043 183'5454 58'0421 (58'0416)
8 513'6353 162'4256 205'4582 64'9714 (64'9689)
9 573-5747 181'3802 229'4309 72-5524 (72-5520)
10 628'8254 198-8521 251-5330 79-5416 (79 -5392)

Table 3. Values of At and VI when Ie .. 1.25. a2
.. 3, " .. 1/3

IC

~ t

0 :S.9912 + 1 0.3903 *3.4102 + i 4.2!l70

1 0.1152 0.(1117

2 0.0280 1.CX302

3 0.1450 0.0400

4 0.0048 0.5975

5 0.0046 0.0273

eigenfunction expansions (12). Here. we have taken the linear edge-stress distribution and have
introduced the notation

(68)

The complex values AI. Vl correspond to the interior solution. The remaining coefficients
correspond to the edge-zone solution.
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Table 4. Inftuence coefficients Ojtl, and 0l:A

K • 1.1

a 2
• 0.'3 1.0257

2 (0'9974)
a = 3'0 1'0197

(1·0184)
a 2

• 30'0 1'2069

K ... 1.25

0·9949
(f). 9941}
1'0433

(1·0430)
0'06

K • 1.1

0'9880
{0·9881}
0'9318

(0.9252)
0'6307

K • 1.25

0'9711
{0·9774}
0'8560

(0·8254)
0'0427

The influence coefficients G~lt and G~ are given in Table 4. The asymptotic theory gives

G~lt =CWM [1+ (2~~ -i)~+O(p2)]

G~ =K~A [1- (ita +i)~+O(p2)]

(69)

(70)

wherep = (K -1)/(K +1)andm4 = 3(1- p2)/4. Theinftuencecoefficientsobtainedusing(69)and(70)
whenthe terms oforder p2are neglectedare showninparentheses. We note theclosenessoftheexact
coefficients and tbe asymptotic results. These calculations were performed using 50 terms in the
series (12). Sufficientconvergence is obtained except in the caseof a2 =30., K =1.25. When a2 =30
eqn (70) is inadequate to obtain the value of G~, even approximately. In this case the asymptotic
values are not presented.

The Limiting case G-+<X>. A closed form solution for the present problem may be obtained
when E/G-+O, i.e. a-+O. The characteristic eqn (59) for A, in this case, reduces to

(71)

When K -+ 1 we set K =1+p(K + 1) where p~ 1and expand functions of K to obtain

(72)

This is the characteristic equation corresponding to a shell theory associated with the names
of Flugge, Byrne and Lure'. Noting that A02- O(l/p), we may neglect the A02-term in (72) and
reduce it to the elementary theory result

(73)

The numerical example considered earlier with K =1.25, p =1/3 in this limiting case leads to

Ao =2.7108 ± i 2.7108,

on the basis of elementary shell theory, and to

Ao =2.6799 ± i 2.7414,

on the basis of the FBL theory. The exact result from (72) is given by

Ao=2.3874± i 2.4421.

(74)

(75)

(76)

The additional values of Ashown in Table 2 represent the effect of shear deformation and the
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associated St. Venant edge-zone. In the case of vanishing shear deformability, the stress
function cI> and the displacement V are given by

(77)

where

(78)

The constants AG, Vo (and their complex conjugates) can be obtained for the four cases of
edge-conditions. However, the "line" type edge-conditions expressed in terms of /(11) and g(l1)
in eqns (17), now affect the solution only through their integrals

(79)

It is obvious that explicit determination of the influence coefficients can be carriedout in this
case.
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